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Failure Mode I: Data Violate Assumptions 
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Assumption: Training data is a good representation of the testing 

Training TestingModel

In the real world:



Failure Mode I: Data Violate Assumptions 

Degraded Visual Environments (DVEs): low-resolution, 
rain, low-light, haze …

• … cause degradations for visual understanding: 
reduced contrasts, detail occlusions, abnormal 
illumination, fainted surfaces and color shift...

• It is related to, but not just, image restoration



Failure Mode I: Data Violate Assumptions 

Synthetic:
(Training)

Real World:
(Testing)

Distribution
Shift
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Failure Mode II: Exploration into Unseen Domain

Uncertain

Exploration

3/11/21 6

State space
it sees in
data



Key: Extrapolation and Model Confidence

New Data

Confidence in the 
new domain?

If I fail, I should fail gently 

Check constraint satisfaction 
in the new domain 

Collect more data to help
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Source Data



Failure Mode III: Malicious Adversary



Failure Mode III: Malicious Adversary



Research Questions:

How to produce robust extrapolation under various
unexpected distribution shifts in computer vision?

We will go through three possible answers:
• Data-level: preprocessing images
• Model-level:

• Domain adaptation and generalization
• Adversarial defense

3/11/21 10



Visual Degradation

• Heavy Rain/Snow
• Underwater 
• Low Light
• Haze/Sandstorm

• Downsample
• Motion Blur
• System Noise
• Optical Distortion

Degradation in 
Data Acquisition

Degradation before 
Data Acquisition

Degradation after 
Data Acquisition

Data Acquisition

• Scratches
• Watermark
• Mildew
• Compression Loss



Restoration and Enhancement: Tons of Tasks

Underwater 
Enhancement

Dehazing Inpainting Super Resolution

Rain Removal Denoising Low Light Enhancement



Goal of Image Enhancement Diversified

• From traditional signal processing (reconstruction) viewpoint
• Full-reference metrics: PSNR, SSIM, etc.

• … to human perception (subjective quality)-based
• No-reference metrics (e.g., NIQE), and human study

• … And to task-oriented, “end utility”-based
• Typical examples: dehazing, deraining, (extreme) light, underwater …
• Representative datasets: RESIDE dehazing (TIP’18), MPID deraining (CVPR’19)
• CVPR UG2+ Challenge: http://www.ug2challenge.org

http://www.ug2challenge.org/


• Data-driven training of “end-to-end” models (usually assuming “pairs”)
• Prior/physical information can still be helpful

Low Quality Image/Video High Quality Image/Video

Video 
Surveillance

Big Data

Data-Driven Solution

Feature
Representation

Feature
Mapping

+

Learning to Enhance Images



Image Denoising 
• Simplest Low-Level Vision Problem

• Noisy Measurement: 𝑦 = 𝑥 + 𝑒

= +



Image Denoising 
• Simplest Low-Level Vision Problem

• Estimate the clean image: &𝒙 = 𝑓(𝑦)

Magic
Denoising
Algorithm



Image Denoising – Conventional Methods
• Collaborative Filtering

• Non-local Mean, BM3D, etc
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• Piece-wise Smooth
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Image Denoising – Conventional Methods
• Collaborative Filtering

• Non-local Mean, BM3D, etc

• Piece-wise Smooth
• Total Variation, Tikhonov Regularization, etc

• Sparsity

• Discrete Cosine Transform (DCT), Wavelets, etc

• Dictionary Learning: KSVD, OMP, Lasso, etc 

• Analysis KSVD, Transform Learning, etc



• Deep Model
• Multiple free layers

Conventional Deep Learning

• Shallow Model
• Equivalently one free layer



• Deep Model
• Multiple free layers

• Supervised 
• Training corpus needed
• Data inefficient

Conventional Deep Learning

• Shallow Model
• One free layer

• Unsupervised 
• No training corpus needed
• Data efficient ?



• Deep Model
• Multiple free layers

• Supervised 
• Training corpus needed
• Data inefficient

• Inverse Problem
• Little assumption
• Almost free model
• Few work until recent

Conventional Deep Learning

• Shallow Model
• One free layer

• Unsupervised 
• No training corpus needed
• Data efficient

• Inverse Problem
• Assumption & Understanding 

of the Data
• Regularizer & structures of the 

Model
• Flexible

?



Image Denoising by Deep Learning
• Natural Idea: train a denoising autoencoder, that regresses clean images from noisy ones

• It is not easy for deep networks to outperform classical methods such as BM3D!!
• BM3D is shown to be better at dealing with self-repeating regular structures

• How to outperform BM3D using a deep network denoiser? Some verified tips:

• The model richness is large enough, i.e. enough hidden layers with sufficiently many hidden units.

• The patch size is chosen large enough, i.e. a patch contains enough information to fit a complicated
denoising function that covers the long tail.

• The chosen training set is large enough

• Other benefits of deep network denoiser:
• The testing speed of deep networks is much faster than BM3D, KSVD etc., benefiting from GPU.
• Deep networks can be generalized to other noise types, if correctly supplied in training.

• Recent works show great progress!
• Check out Git repo: https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art


Image Denoising by Deep Learning
• Reference: “Image denoising: Can plain Neural Networks compete with BM3D?”



Image Deblurring 

• Blurred Measurement: 𝑦 = 𝑀⊗ 𝒙

= ⊗



Image Deblurring

• Estimate the stable image: &𝒙 = 𝑓(𝑦)

Magic
Deblurring
Algorithm



Image Deblurring
• Non-blind Image Deblurring

• Suppose you know the blurring kernel, 𝑴.

• "𝒙 = 𝑓(𝑦,𝑀)

• All training data need to have consistent 𝑴, as the testing data



Image Deblurring
• Non-blind Image Deblurring

• Suppose you know the blurring kernel, 𝑴.

• "𝒙 = 𝑓(𝑦,𝑀)

• All training data need to have consistent 𝑴, as the testing data

• Blind Image Deblurring – More challenging yet practical problem

• Estimate both the image, and the blurring kernel

• {"𝒙,𝑀} = 𝑓(𝑦)



Image Deblurring by Deep Learning
Reference: “Deep convolutional neural network for image deconvolution”

• Key Technical Features:
• Treat deblurring as a deconvolution task, and the deconvolution operation can be approximated by a convolutional network 

with very large filter sizes

• Concatenation of deconvolution CNN module with another denoising CNN module to suppress artifacts and reject outliers



Blind Image Deblurring by Deep Learning
Reference: “Learning to Deblur”

• Key Technical Features:
• Iteratively estimate both the blurring kernel, and the underlying image.
• Separate network to capture the image property, and the kernel information, respectively.



Blind Image Deblurring





Blind Image Deblurring



DeblurGAN V2 (2019)



Image Super-Resolution

• Low-Resolution Measurement: 𝑦 = 𝐷 ∗ 𝑀⊗ 𝒙

=



Image Super-Resolution

• Estimate the stable image: &𝒙 = 𝑓(𝑦)

Magic
Super-Resolution

Algorithm



Image Super Resolution by Deep Learning
Reference: “Image super-resolution using deep convolutional networks”

• Key Technical Features:
• Learns an end-to-end mapping from low to high-resolution images as a deep CNN
• Closely mimic the traditional SR pipeline: LR feature extraction -> coupled LR-HR feature space mapping -> HR

image reconstruction



Image Super Resolution by Deep Learning
(2013 – 2017)

Super-resolution results of “148026” (B100) with scale factor ×3 (from VDSR paper)



New Trends?

• New topic: dehazing, deraining, low light enhancement, etc.

• New goal: human perception v.s.machine consumption

• New setting: from supervised to unsupervised training (no “GT”)
• … or relying on “synthetic pairs”

• New domain: medical images, infrared images, remote sensing images, etc.

• New concern: “All-in-one” adaptivity, efficient implementation, etc.



Lots of Progress – but “not there” yet
Why?Example:



Shortage of Real-World Generalization

• Most SOTA algorithms are trained with {clean, corrupted} paired data
• Such paired training data is usually collected by synthesis (assuming known

degradation model), which typically oversimplifies the real-world degradations
• As a result, the trained model “overfits” simpler degradation process and

generalizes poorly to real visual degradations

• Real-world collection of paired data?
• Can be done in small scale and/or in controlled lab environments

• e.g. some recent datasets in light enhancement, and raindrop removal
• Very difficult to “scale up”, sometimes maybe impossible



EnlightenGAN: Deep Light Enhancement without Paired Supervision

Goal: Light enhancement made automatic, adaptive, and artifact-free



From Supervised to Unsupervised Enhancement
• EnlightenGAN is the first work that successfully introduces unpaired 

training to low-light image enhancement.
• It only needs one low-light set A and another normal-light set B to train, while

A and B could consist of completely different images!

• What makes Unpaired Training unique and attractive?
• It removes the dependency on paired training data

• Hence enabling us to train with massive images from different domains
• It also avoids overfitting any specific data generation/imaging protocol

• …that previous works implicitly rely on, leading to stronger generalization.
• It makes EnlightenGAN particularly easy and flexible to be adapted 

• when enhancing real-world low-light images from completely different/unseen domains



Model Architecture

Paper: https://arxiv.org/abs/1906.06972
Code: https://github.com/VITA-Group/EnlightenGAN

https://arxiv.org/abs/1906.06972
https://github.com/VITA-Group/EnlightenGAN


Key Components that make it work
• Using a large, real unpaired training dataset

• We assemble a mixture of 914 low light and 1016 normal light images (no need for any pair)
• From several datasets and HDR sources, with a wide range of image quality factors)

• Combining a global and a local patch discriminator
• Taking care of both global composition, and local fine details

• Self Feature-Preserving Loss
• Computing VGG distance between input-output images
• Based on our empirical observation that VGG features are robust to light changes

• Self-Regularized Attention
• We take the illumination channel I of the input RGB image, normalize it to [0,1], and then use 1 – I

as our self-regularized attention map.
• We then resize the attention map and multiply it with all intermediate feature maps the output.



Comparison with State-of-the-Arts



[New!] Frustratingly Easy Adaptation to New Data



PreProcessing for Improving Classification

• We applying our pretrained EnlightenGAN as a pre-processing step on the testing set of the ExDark
dataset , followed by passing through another ImageNet-pretrained ResNet-50 classifier.

• It improves the classification accuracy from 22.02% (top-1) and 39.46% (top-5), to 23.94% (top-1) 
and 40.92% (top-5) after enhancement.



Uncertainty & Robustness for Out-of-Distribution Generalization



What do we mean by Uncertainty?

Return a distribution over predictions 

rather than a single prediction.

● Classification: Output label along with  

its confidence.

● Regression: Output mean along with  

its variance.

Good uncertainty estimates quantify when we  

can trust the model’s predictions.
X

Image credit: Eric Nalisnick

Y

X1

X2

Y



What do we mean by Out-of-Distribution Robustness?

I.I.D. pTEST(y,x) = pTRAIN(y,x)

pTEST(y,x) ≠ pTRAIN(y,x)O.O.D.

Examples of dataset shift:

● Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.

● Open-set recognition. New classes may appear at test time.

● Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.



ImageNet-C: Varying Intensity for DatasetShift

Image source: Benchmarking Neural Network Robustness to Common  
Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

I.I.D test set

Increasing dataset shift

https://arxiv.org/abs/1903.12261


● Accuracy drops with  
increasing shift on  
Imagenet-C

● But do the models
know that they are
less accurate?

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019

Neural networks do not generalize under covariate shift

https://arxiv.org/abs/1906.02530


● Accuracy drops with  
increasing shift on  
Imagenet-C

● Quality of uncertainty  
degrades with shift
-> “overconfident  
mistakes”

Neural networks do not know when they don’t know



Models assign high confidence predictions to OOD inputs

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020

High uncertainty  
(low confidence)

Low uncertainty  
(high confidence)

Ideal behavior

Trust model when x* is close to pTRAIN(x,y)

Deep neural networks

https://arxiv.org/abs/2006.10108


Dataset shift:

● Time of day / Lighting
● Geographical location (City vs suburban)
● Changing conditions (Weather / Construction)

Self-driving cars

Image credit: Sun et al, Waymo Open Dataset

Night

Downtown

Daylight

Construction
Suburban

Weather

https://waymo.com/open/about/


Open SetRecognition

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

● Example: Classification of genomic  

sequences

● High accuracy on known classes is  

not sufficient

● Need to be able to detect inputs

that do not belong to one of the

known classes

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”
○ Vanishes in the limit of infinite data (subject to  

model identifiability)

● Models can be from same hypotheses class (e.g.  

linear classifiers in top figure) or belong to different  

hypotheses classes (bottom figure).



Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

● Measurement noise (ex: imprecise tools)
● Missing data (ex: partially observed  

features, unobserved confounders)

● Also known as aleatoric uncertainty

● Data uncertainty is “irreducible*”

○ Persists even in the limit of infinite data

○ *Could be reduced with additional 

features/views
Image source: Battleday et al. 2019 “Improving machine  
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80%  
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Calibration Error = |Confidence - Accuracy|



How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

● Bin the probabilities into B bins.
● Compute the within-bin accuracy and within-bin predicted confidence. 

● Average the calibration error across bins  (weighted by number of points in each bin).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Confidence >Accuracy

=>Overconfident

=> Underconfident

Image source: Guo+ 2017 “On calibration of modern neural networks”

Confidence <Accuracy

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599


How do we measure the quality of uncertainty , practically?

Evaluate model on  
out-of-distribution  
(OOD) inputs which  
do not belong to any  
of the existing classes

● Max confidence
● Entropy of p(y|x) 

CIFAR-10 (i.i.d test inputs)
CIFAR-10
classifier

SVHN (o.o.d test inputs)

Confidence on i.i.d inputs > Confidence on o.o.d inputs ?



Measure generalization to a large collection of real-world shifts. A large collection of tasks  
encourages general robustness to shifts (ex: GLUE for NLP).

● Novel textures in object recognition.
● Covariate shift (e.g. corruptions).
● Different sub-populations (e.g. geographical location).

How do we measure the quality of robustness, practically?

Nearby video frames  
(ImageNet-Vid-Robust, YTBB-Robust)

Multiple objects and poses  
(ObjectNet)

Different renditions  
(ImageNet-R)

https://gluebenchmark.com/


Neural Networks with SGD
Nearly all models find a single setting of parameters to maximize the probability  
conditioned on data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!
Image source: Ranganath+ 2016

Data uncertainty

https://arxiv.org/abs/1511.02386


A Simple Baseline for Improving Uncertainty Calibration

Problem: results in just one prediction per example
*No model uncertainty*

How do we get uncertainty?
● Probabilistic approach

○ Estimate a full distribution for 

● Intuitive approach: Ensembling
○ Obtain multiple good settings for 

Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


● A prior distribution often involves the complication of approximate inference.
● Ensemble learning offers an alternative strategy to aggregate the predictions over a  

collection of models.
● Often winner of competitions!
● There are two considerations: the collection of models to ensemble; and the  

aggregation strategy.

Popular approach is to average predictions of independently trained models, forming a  
mixture distribution.

Many approaches exist: bagging, boosting, decision trees, stacking.
...What this reminds you in neural networks?

[Dietterich 2000]

Ensemble Learning

https://scholar.google.com/scholar?q=Dietterich%2B2000%2Bensembles&hl=en&as_sdt=0&as_vis=1&oi=scholart


An Old Friend Wears A New Hat: (Monte Carlo) Dropout!

Image source: Dropout: A Simple Way to Prevent Neural Networks fromOverfitting

[Gal+ 2015]

https://arxiv.org/abs/1506.02142


Simple Baseline: Deep Ensembles

Idea: Just re-run standard SGD training but 
with  different random seeds and average 
the predictions

● A well-known trick for getting better 
accuracy and Kaggle scores

● Beyond accuracy – it is good for
robustness and uncertainty too!!

● Themean of predictions is often
more accurate, and the variance of
those predictions reflect “confidence”

● We rely on the facts that the loss 
landscape is non-convex and SGD
has noise

[Lakshminarayanan+ 2017]

https://arxiv.org/abs/1612.01474


Deep Ensembles work surprisingly well in practice 

Deep Ensembles are consistently among the best performing methods, especially under dataset shift



Table source: Guo+ 2017 “On calibration of modern neural networks”

Softmax: Temperature re-
scaling (beat them all!):

https://arxiv.org/abs/1706.04599


Inductive Priors & Knowledge: Another Powerful Tool for 
Uncertainty & Robustness

What about inductive biases to assist OOD?

● Hypothesis: “Representations should be invariant with 
respect todataset shift.”

● Data augmentation extends the dataset in  order to 
encourage invariances.

● More examples: contrastive learning, equivariant
architectures.

Image source: Dumoulin & Visin 2016

Data augmentation requires two considerations:

1. Set of base augmentation operations.  (Ex: color distortions, word substitution)
2. Combination strategy (Ex: Sequence of K randomly selected ops.)

https://arxiv.org/abs/1603.07285


Composing base operations and ‘mixing’ them can improve accuracy and calibration under shift.

[Hendrycks+ 2020]

Composing a set of base augmentations

https://arxiv.org/abs/1912.02781


AugMix improves accuracy & calibration under shift

Data augmentation can provide complementary benefits to marginalization.

[Hendrycks+ 2020]

https://arxiv.org/abs/1912.02781


● Uncertainty & robustness are critical problems in AI and machine learning.

● Benchmark models with calibration error and a large collection of OOD shifts.

● Probabilistic ML, ensemble learning, and optimization provide a foundation.

● The best methods: ensemble multiple predictions; imposing priors and 
inductive biases; and “lower your temperature” when using softmax

● Many future progress are expected – a key knob to make ML “real”

Takeaways



ML Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) noise (NOTrandom) “airliner” (99%)

+ 0.005 x =

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013]  
[Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005]  
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov2013]



Three commandments of Secure/Safe ML

I. Thou shall not train on data you don’t fully trust
(because of data poisoning)

II. Thou shall not let anyone use your model (or observe its  
outputs) unless you completely trust them

(because of model stealing and black boxattacks)

III. Thou shall not fully trust the predictions of your model
(because of adversarial examples)







A Possible By-Product of ML Bias-Variance Trade-Off



























-> Other Difficulties such as Robust Overfitting (ICML 2020) etc.





Adversarial Examples Beyond Pixel Perturbations …



Adversarial Examples Beyond Pixel Perturbations …





Poisoning Attack

[Shafahi+ 2018]

https://arxiv.org/abs/1912.02781


• Solution: Nasty Teacher, ICLR 2021, et. al.





Further Read: https://adversarial-ml-tutorial.org/

https://adversarial-ml-tutorial.org/



